A QR-type reduction for computing the SVD of a general matrix product/quotient

نویسندگان

  • Delin Chu
  • Lieven De Lathauwer
  • Bart De Moor
چکیده

In this paper we derive a new algorithm for constructing a uni-tary decomposition of a sequence of matrices in product or quotient form. The unitary decomposition requires only unitary left and right transformations on the individual matrices and amounts to computing the generalized singular value decomposition of the sequence. The proposed algorithm is related to the classical Golub-Kahan procedure for computing the singular value decomposition of a single matrix in that it constructs a bidiagonal form of the sequence as an intermediate result. When applied to two matrices this new method is an alternative way of computing the quotient and product SVD and is more economical than current methods. 1 KEYWORDS. Numerical methods, generalized singular values, products of matrices, quotients of matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Svd of a General Matrix Product/quotient

In this paper we derive a new algorithm for constructing a unitary decomposition of a sequence of matrices in product or quotient form. The unitary decomposition requires only unitary left and right transformations on the individual matrices and amounts to computing the generalized singular value decomposition of the sequence. The proposed algorithm is related to the classical Golub–Kahan proce...

متن کامل

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

Parallel Computation of the SVD of a Matrix Product

In this paper we study a parallel algorithm for computing the singular value decomposition SVD of a product of two matrices on message passing multiprocessors This algorithm is related to the classical Golub Kahan method for computing the SVD of a single matrix and the recent work carried out by Golub et al for computing the SVD of a general matrix product quotient The experimental results of o...

متن کامل

Using semiseparable matrices to compute the SVD of a general matrix product/quotient

In this manuscript we reduce the computation of the singular values of a general product/quotient of matrices to the computation of the singular values of an upper triangular semiseparable matrix. Compared to the reduction into a bidiagonal matrix the reduction into semiseparable form exhibits a nested subspace iteration. Hence, when there are large gaps between the singular values, these gaps ...

متن کامل

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2000